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SUMMARY 

It i s  shown tha t ,  f o r  i d e a l  bundles having a given number of f i b e r s  t ha t  
2 1  and a given number of f i b e r s  that w i l l  w i l l  break under a load per f i b e r  

not break under a load 22 ( > 2 1 ) ,  t he  average number of unbroken f i b e r s  i n  the  
bundle a t  loads between 2 1  and 22 depends l i n e a r l y  on the  probabi l i ty  t h a t  
an individual  f i b e r  picked a t  random w i l l  support a load 1. Bundles a r e  
grouped according t o  the  number of f i b e r s  i n  the  bundle t h a t  can support t h a t  
load per f i b e r  a t  which t h e  average t o t a l  load supported by the bundle i s  a 
maximum. An approximation t o  the maximum of the  average load supported by the  
bundle i s  a r r ived  a t  f o r  each group, and t h i s  maximum averaged over t he  groups 
cons t i t u t e s  a lower bound f o r  the  average breaking s t rength  of the  bundle. 
r e s u l t s  agree with those of Pierce and Daniels. 

The 

INTRODUCTION 

A c l a s s i c a l  f i b e r  i s  one t h a t  w i l l  support a load l e s s  than i t s  breaking 
s t rength  inde f in i t e ly  without s t re tch ing  o r  breaking but  w i l l  break immediately 
under any load equal t o  or i n  excess of i t s  breaking strength. The fundamental 
papers dealing with the breaking s t rengths  of an i d e a l  bundle (no f r i c t i o n  or 
t w i s t )  of equal-length c l a s s i c a l  f i b e r s  a r e  those by Pierce ( ref .  1) and Daniels 
( r e f .  2 ) .  Pierce w a s  the  first t o  obtain an approximation t o  t he  average break- 
ing s t rength  of a bundle of N such f i b e r s .  Daniels r igorously showed by 
sophis t ica ted  mathemstical methods t h a t  the  expression of Pierce i s  the  co r rec t  
asymptotic l i m i t  of the  breaking s t rength  as N ge ts  la rge .  He a l s o  found the  
asymptotic l i m i t  of t he  variance of t he  breaking s t rength  f o r  la rge  
t h i s  repor t ,  t he  method of reasoning employed leads t o  the establishment of t he  
aforementioned r e s u l t s  from a viewpoint that is based on physical  rather than 
mathemt ica l  ins ight .  

N. In 

SYMBOLS 

B ( 2 )  

b ( 2 )  

probabi l i ty  t h a t  randomly se lec ted  f i b e r  w i l l  break a t  load less than 2 

frequency function f o r  breaking s t rength of individual  f i b e r s  randomly 
se lec ted  

E expectation value 
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ZR( 2 ) 
n 

n th  der ivat ive of G ( 2 )  w i t h  respect  t o  2 evaluated a t  Z 

nth Hermite polynomial of y 

dummy index 

t o t a l  load on bundle of fibers 

t o t a l  load a t  2 averaged over population of bundles 

load per f i b e r  

load per f iber  a t  which average t o t a l  load L is maximum 

number of f i b e r s  i n  bundle 

number of unbroken f i b e r s  i n  bundle 

number of unbroken f i b e r s  i n  bundle a t  load ? 
order 

probabi l i ty  

probabi l i ty  that randomly se lec ted  f i b e r  w i l l  support load up t o  2 

average breaking s t rength  of  bundle 

var iable  (NR(?) - G)/d* 

variable  of in tegra t ion  

value of  2 tha t  maximizesAaverage load supported by bundles having 
unbroken f i b e r s  a t  load 2 

t h i r d  moment about or ig in  f o r  var iab le  y 

standard deviation 

CONCEPT OF PATH 

Let the  d i s t r ibu t ion  of breaking loads of  a c l a s s i c a l  f i b e r  be given by 
the  frequency function b( Z), where b(  2)dZ is  the probabi l i ty  t h a t  a randomly 
selected individual  f i b e r  w i l l  have a breaking s t rength lying i n  dZ a t  2 .  

2 
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The cumulative d i s t r ibu t ion  function 

B ( 2 )  = f 2  b(0)de 
0 

is the  probabi l i ty  t h a t  a randomly se lec ted  f i b e r  w i l l  break a t  some load less 
than 2 .  Let R(2) = 1 - B ( 2 )  denote the  probabi l i ty  that a f i b e r  w i l l  remain 
unbroken up t o  load 2. 

load d i s t r ibu te s  i t s e l f  evenly over t he  unbroken f i b e r s  so  tliat each of t h e  n 
unbroken f i b e r s  supports a load 
fisber of t h e  bundle does not depend on the  ac t ion  of the  other f i b e r s  of t h e  
bundle and, hence, t he  breaking s t rength  of t he  bundle may be determined from 
the  s t rengths  of the individual  f i b e r s .  In  pa r t i cu la r ,  suppose one considers 
t he  bundle as separated i n t o  i t s  independent individual  f i b e r s  with separate  
loads 2 of equalm,agnitude on. each f i b e r .  Le t  t h i s  load 2 be allowed t o  
increase monotonically from zero t o  t h e  breaking s t rength  of t h e  s t rongest  
f i b e r .  Then, a t  any poin t  i n  the  process where the  individual  f i b e r s  support a 
load 
number of unbroken f i b e r s  n (2 )  and t h e  load 2 ac t ing  on each unbroken f i b e r .  
Thus, t he  breaking s t rength  of the bundle i s  the  mximum of the t o t a l  load L. 
A f t e r  t h i s  maximum L has been reached, further increases i n  2 cause a reduc- 
t i o n  i n  the  t o t a l  load L ( 2 )  = l n ( 2 ) .  (If the  f ibe r s  were not  separated i n  t h i s  
manner, and i f  breaking s t rength  were determined by increasing L u n t i l  break- 
age occurred, no decreases i n  t o t a l  load L would appear, and the  bundle would 
immediately break after the  breaking s t rength  of the bundle had been reached.) 

When a load L is  hung on an i d e a l  bundle of N c l a s s i c a l  f i be r s ,  t he  

2 = L/n. The breaking s t rength of a given 

2 ,  t h e  t o t a l  load L ( 2 )  supported by t h e  bundle i s  the  product of t h e  

The s i tua t ion  may be depicted by means of f igure  1 (p. 4 ) .  I n  f i g -  
ure l ( a ) ,  a typ ica l  p lo t  of 2 against  R ( 2 )  i s  given. (Note t h a t  i n  the  f i g -  
ures,  R ( 2 )  decreases from uni ty  t o  zero as one proceeds from l e f t  t o  r i g h t  along 
the  horizontal  a x i s . )  It can be seen t h a t  as 2 increases from zero t o  high 
values, R ( 2 )  decreases from uni ty  t o  zero or, i f  R ( 2 )  i s  t o  be considered the  
independent var iable ,  2 increases from zero t o  high values a s  R(2) decreases 
from uni ty  t o  zero. The path followed by a bundle of N f i b e r s  averaged over 
the  population of bundles i s  shown as the s t r a i g h t  l i n e  i n  f igure  l ( b ) ,  where 
the  expected number of surviving f ibe r s  i s  given by E(n) = N R ( 2 ) .  The path 
taken by a typ ica l  bundle i s  shown i n  f igure  l ( c ) ,  where n f o r  t h a t  bundle 
i s  plot ted against  R (  2 ) .  For large N a t  least ,  the ac tua l  path followed by 
a par t icu lar  bundle would be expected t o  l i e  f a i r l y  close t o  t h e  average path 
as given by the E(n) l ine .  

RESULTS OF PIERCE AND DANIELS 

The average load supported by the  bundle as a function of 2 i s  
- 
L ( 2 )  = 2E(n) = NZR(2) 

The maximum average load supported by the  bundle i s  
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where 2 s a t i s f i e s  the  equation 

(a) Load. 

- 
0 

(b) Expectation of survival. 

1 0 
Probabilitythat fiber wi! l  support load Z, R(Z) 

(c) Number of unbroken fibers. 

Figure 1. - Plots with R(Z) as independent variable. 

Equations ( 2 )  and (3)  represent  the 
approximation t o  the  breaking s t rength  
of the  bundle a s  given by Pierce.  
Daniels showed t h a t  t h i s  r e s u l t  i s  the  
co r rec t  asymptotic l i m i t  f o r  the  ex- 
pectat ion value of the  breaking 
s t rength  f o r  l a rge  N. He also found 
t h a t  the  asymptotic l i m i t  f o r  the  
standard deviation of the  s t rength  f o r  
l a rge  N i s  given by 

rs = ? ) / N R ( ? ) B ( i )  (4 )  

Daniels makes the  per t inent  remark t h a t  
equation ( 4 )  would follow i f  one could 
assume t h a t  the breaking s t rength  A isA 
only dependent on the  number nn= n ( 2 )  
of f i b e r s  surviving a t  a load 2 where 
n is, of course, d i s t r ibu ted  according 
t o '  the  simple binomial l a w .  
however, t h a t  there  appears t o  be no 
"a p r i o r i  j u s t i f i c a t i o n "  f o r  this 
assumption. 

* 

He adds, 

- 
The average breaking s t rength  S 

of a bundle of N f i b e r s  i s  the  maxi- 
mum load t h a t  the  bundle supports 
averaged over the  population of bundles. 
For a pa r t i cu la r  bundle, t h i s  maximum 
loadAwil l  not, i n  general, occur a t  
2 = 2,  a9d hence, it w i l l  be l a r g s r  
than L( Z) ,  the  value of L n a t  2 .  On 
the  other hand &ax is  L( 2 )  averaged 
over the  population of bundles, and 

- therefore ,  -hX const i tu tes  a lower 

as given by equation ( 2 )  t r e a t s  

bound for  S. 
f i g .  1( c ) )  occurred a t  2 = 2 ,  then 2 L( 2 )  would indeed be S exactly.  
It can be s a i d  t h a t  the  approximation t o  
every path as though i t s  maximum load occurred a t  

If the maxim9 load for every-ppsible path ( i n  the  - sense of 

S 
A 

2 = 2. 

AVERAGE PATH BETWEEN TWO DESIGNATED POINTS 

It s h a l l  f i rs t  be shown t h a t ,  f o r  values of 2 ly ing  between 2 1  and 22, 

4 



t h e  average path taken by bundles which a r e  constrained t o  go through the  
points  R ( Z 1 ) ,  n l  and R(Z2),n2 ( i .e . ,  bundles which have n l  unbroken 
f i b e r s  a t  a load 2 1  and n2 unbroken f i b e r s  a t  a load 2 2 )  is merely the  
s t r a i g h t  l i n e  connecting these two points on a p l o t  of n against  R ( 2 ) .  The 
proof i s  straightforward and goes as follows. 

The probabi l i ty  that a bundle or ig ina l ly  consis t ing of N f i b e r s  takes 
a path such t h a t  it has n l  survivors a t  2 1  and n2 survivors a t  22 
where N > - n l >  - n2 > - 0 and 0 - < Z1< l2 is 

P ( n l  a t  2 1 ,  n2 a t  2 2 )  = N! 
( N  - n l ) ! ( n l  -n2)!n21 

The probabi l i ty  that a bundle or ig ina l ly  consis t ing of 
t h a t  passes through t h e  three points n l  a t  2 1 ,  n a t  2 ,  and n2 a t  22,  
where N > nl > n > nz > - 0 and 0 5 l1 1. 2 5 12, i s  

N f i b e r s  takes a path 

- - -  

[B( 21)]N-n1[R( 11) - R( 2)]n1-n [R(  2 )  - R(2;:)]n-n2[R(2z)]n2 ( 6 )  

The conditional probabi l i ty  t h a t  a bundle which passes through n l  a t  2 and 
n2 a t  Z 2  has n unbroken f i b e r s  a t  2 i s  given by dividing equation 1 6 )  
by equation ( 5 )  

The expectation value of n a t  2 f o r  a bundle passing through n l  a t  2 1  
and nz a t  12 i s  

n l  
E(n a t  2/nl a t  2 1 ,  nz a t  2 2 )  =>;nP(n a t  2 / n l  a t  2 1 ,  n2 a t  2 2 )  

n=ng 

where 
average number of f i b e r s  surviving i n  a bundle passing through n l  a t  2 1  and 

N > nl > n > n2 > - 0 and 0 e < 2 1  - -  < 2 < 12. Equation (8 )  shows t h a t  the - - -  

5 
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n2 a t  22 i s  l i n e a r  i n  R ( 2 ) .  Therefore, t he  
average path appears as a s t r a i g h t  l i n e  connecting 
the  points n l  a t  2 1  and n2 a t  22 on a 
p l o t  of n aga ins t  R (  2 ) .  

\2\ \q CLASSIFICATION OF PATHS 
3 - 0 I n  the  calculat ions i n  t h i s  sect ion,  the 
d I paths w i l l  be grouped i n  accordznce with 6, the  
= o  5 I R ( i )  number of f i b e r s  surviving a t  2 ,  and t h e  average 

1 0 loads for each c l a s s  of paths shall be found a s  a 
Probability that fiber w i l l  support function of 2 or R( 2 ) .  It s h a l l  be shown t h a t  

the  average load for p t h s  1 ( f i g .  2 )  having more 
f i b e r s  surviving a t  
maximum value a t  2 = 2 ,  whereaa the  average load 

fo r  paths 2 havingAfewer f i b e r s  surviving than expected a t  2 reaches a maxi- 
mum value a t  2 < 2 .  
n c a r r i e s  through a t  a l l  values of 2 s o  t h a t  the  average load L a t  any 2 
fo r  bundles having a given n may be determined. The subdivision can a l s o  be 
regarded as  a first, although primitive,  s t e p  i n  the  approach t o  the i d e a l  
wherein the  probabi l i ty  and maximum supported load a r e  determined f o r  each 
possible  path, so  t h a t  an - averaging of t he  maximum loads over the i n f i n i t e  pop- 
u l a t ion  of paths y ie lds  

L 

load 1, R ( 0  

Figure 2. - Average paths of bundles. Z A  than expected reaches a 

This subdivision of paths i n  accordance with-the value of 
A 

A 

S, the  average breaking s t rength  of the  blmdle. 

In  accordance with equation 18), t he  expectation value of n a t  2 for 
a bundle passing through 6 a t  2 is  

Figure 2 represents  the s i t u a t i o n  t h a t  preva i l s .  
the  i n i t i a l  point  and the  terminal point 
If no other point  along the  path is  specif ied,  t he  path averaged over the 
bundles i s  given by curve 0 of f igu re  2, t h a t  is, by the  s t r a i g h t  l i n e  connecting 
the  i n i t i a l  and terminal points .  If a point  is  spec i f ied  along the  path between 
the  i n i t i a l  and terminal points ,  two-segmented l i n e s  r e s u l t  t h a t  represent  t he  
average paths of bundles going through the  addi t iona l  point  specifLed (curyes 1 
and 2 of f i g .  2 ) .  The addi t iona l  point  specizied forAcurve 1 is  n l  a t  2 ,  
whereas the  addi t iona l  point  f o r  curve 2 i s  n2 a t  2 .  

Every path must go through 
n = 0, R ( 2 )  = 0 .  n = N, R ( 2 )  = 1 

When the  load per f i b e r  i s  Z L  the  average t o t a l  load supported by a 
A 

bundle which goes through n a t  2 i s  

L(Z/; a t  7) = 1E(n a t  Z / G  a t  ?) 

6 



MAXIMUM LOADS ON PATHS 
A 

A The maxi" load that occurs on an average path when a par t icu lar  
a t  2 i s  specif ied can be determined as follows. Let G( 2 )  2R( 2 ) ;  then 
equations (1) and (3)  can be wr i t ten  

n 

- 
~ ( 2 )  = N G ( ~ )  (la> 

G ' ( ? )  = 0 (3a) 
- 

The assumption i s  a l s o  made t h a t  the  form of R ( 2 )  is such tha t  L ( 2 )  exhibi ts  
one and only one peak, t h a t  peak occurring a t  
equivalent t o  requiring t h a t  

?. Mathematically t h i s  i s  

G ' ( 2 )  > 0 2 < ?  ( 1la 1 
G ' ( 2 )  < 0 2 > 2  ( l l b  1 

A 

From equations ( 9 )  and (lo), 

A 

Equation ( 1 2 a )  shows t h a t ,  f o r  value? of 6 > NR(:), x(2 /6  a t  2 )  i s  
A 

always increaEing up t o  2 = 2 .  A t  
and E( ll;; a t  2 ) decreases as 2 increases wgen 2 > 2 .  HenceJAwhen 
6 > NR( I ) ,  the maximum value of L( 2 / g  a t  2 )  occurs a t  2 = 2 or 

2 = 2 ,  the  siopz changes sign (eq.  (12b))  
- 

Again, by equations (,12), f o r  values of 6 < NR(?), z(l/g a t  ?)  reaches 
a maximum when 2 = A;; < 2 ,  where A;; sa t isf ies- the equation - 

GI($) = NR(?) - El 
N - 2  

With 
can be expanded i n  powers of 
a r e  functions of the der ivat ives  of G( 2 )  evaluated a t  

6; denoting the r i g h t  s i d e  of equation (14), the  following quant i t ies  
6$, where the coef f ic ien ts  of the  powers of 6;; 

?: 
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In equations (15) t o  (17 )  t he  symbol Gn r%presents t he  
G( 2 )  with respect  t o  2 evaluated a t  2 = 2 .  Note t h a t  

n th  der ivat ive of * < 0.  

Q, when the  paths Equations (13) and ( 1 7 )  show that t o  +?st order i n  
are c l a s s i f i e d  i n  accordance with 3 a t  2,  Daniels'  r e s u l t  holds, t h a t  is, 
t h e  Qreaking s t rength  of t he  bundle i s  only dependent on the  number of survivors .. 
a t  2 .  

Equation ( 1 7 )  may be employed t o  f ind  
average breaking s t rength,  than t h a t  given 

5 >r P ( 2  a t  t)L(AG/G a t  i:) > NTR(2) 

G=O 

A 

If the var iable  is  changed from n t o  y, 
and i s  defined by 

- 
a l a rge r  lower bound f o r  S, the 
by equation ( 2 )  : 

g+($%-L)6z+. Gz G2 . .] (18) 

where y i s  of standard measure 

the frequency funct ion 
Hn(y) by t h e  method of Kendall and S tua r t  ( r e f .  3 ) :  

f ( y )  can be expanded i n  terms of Hermite polynomials 

A l s o  can be wr i t t en  as a se r i e s  i n  powers of y:  

k=O 

8 



Subs t i tu t ing  i n  equation (18)  y ie lds  

The variance of the  breaking load based on t h e  previous approximations is  given 
as 

I 

/ 

( 2 3 )  

CONCLUDING REMARKS 

A method of determining a lower bound f o r  the  average breaking s t rength  of 
a bundle o f  c l a s s i c a l  f i b e r s  has been presented which involves the  subdivision 
of the  bundles i n  accordance with the  number of unbroken f i b e r s  a t  a given 
value of load per f i b e r .  The method a l s o  y ie lds  the  approximate s t a t i s t i c a l  
d i s t r ibu t ion  of the  breaking s t rengths  s o  t h a t  the  variance of s t rengths  may be 
calculated.  The r e s u l t  agrees with the  l i t e r a t u r e .  

L e w i s  Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, September 13, 1965. 
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